

Lithium Electrode Sub-Assemblies (LESAs) Incorporating Nanostructured Lithium-Ion Conducting Composites

Yet-Ming Chiang, 24M Technologies, Inc.
Peter Frischmann, Sepion Technologies, Inc.
Brett Helms, Lawrence Berkeley National Laboratory
Venkat Viswanathan, Carnegie Mellon University

Project Vision

Leverage novel polymer scaffolds to nanostructured high-conductivity inorganic/organic composites that enable high-rate, high-capacity cycling of high energy density Li metal batteries, demonstrated using 24M's unique high areal capacity semi-solid electrode platform.

otal project cost:	\$3.3M
Current Q / Total Project Qs	Q16 / Q17

The Concept

Composites operating in newly-identified region of stability have been successfully synthesized, applied to separators, and interfaced with lithium metal.

Viswanathan and **Helms**, et al. "Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries." *Nature Materials* **19**, 758 (2020).

Intelligent cell design pairing lithium metal with thick SemiSolid cathodes promises exceptional energy density.

Measure
Program target:

*https://www.ene

Measured specific energy: 427 Wh/kg

Program target: 400 Wh/kg, state-of-the-art: 350 Wh/kg*

*https://www.energy.gov/eere/articles/battery500-progress-update

Chiang and **Viswanathan**, et al. "Design principles for self-forming interfaces enabling stable lithium-metal anodes." *PNAS* **117**, 27195 (2020).

The Team

Team member	Location	Core Competencies
24M Technologies	Cambridge, MA	Battery Development and Manufacturing
Carnegie Mellon University Carnegie Mellon University	Pittsburgh, PA	Theory, Modeling, and Predictive Analysis
Lawrence Berkeley National Lab	Berkeley, CA	Composite Development and Characterization
Sepion Technologies	Emeryville, CA	Composite Development & Processing

Project Objectives

Year One: Develop LESA chemistry / processing and integrate into battery cell.

Year Two: Scaleup to pouch cells w/ 24M's SemiSolid technology and improve LESA to reach 200 cycles.

Year Three: Scale-up to 80 cm² pouch with a cell design > 400 Wh/kg and > 1000 Wh/L.

Plus-Up: Optimize for eVTOL and EV end-use applications and reach 500 cycles.

Li per cycle ≥ 1 mAh/cm²

100 cycles @ ≥ 1mA/cm²

Li per cycle ≥ 2 mAh/cm²

Y2 200 cycles @ ≥ 2mA/cm²

Li per cycle > 6 mAh/cm²

Y3

>300 cycles* @ ≥ 3 mA/cm² > 400 Wh/kg, > 1000 Wh/L *projection

Li per cycle > 6 mAh/cm²

Plus-Up

500 cycles @ ≥ 3mA/cm² > 400 Wh/kg, > 1000 Wh/L Peak Power > 1 kW/kg

Cell Optimization for End-Use Applications

Cell design optimized for power performance in eVTOL application for cycle life in EV application

eVTOL Testing – Best in Class

Fredericks, W.L., Sripad, S., Bower, G.C. and **Viswanathan, V.,** 2018. ACS Energy Letters, 3(12), pp.2989-2994.

Energy density achieved with SemiSolid Li-metal is an enabling technology for eVTOL applications

Challenges, Risks and Potential Technical Partnerships

Challenges and Risks

- High quality and consistent Li-metal supply
- Maintaining low ASR to reduce power fade high-power eVTOL applications
- Pack design incorporating cell compression for Li-metal performance
- Electric aircraft market development

Mitigation

- Partnerships with pack manufacturers
- eVTOL commercial partners, parallel development of EV-capable cells

Additional Partnership Opportunities

Lithium metal supplier

Capabilities

 SemiSolid manufacturing platform is material agnostic and we are constantly seeking new and improved active materials to incorporate into our design

COVID Best Practices

- Staggered shifts to reduce employee concentration on site and remote internal and external meetings
- Automated and robotic experimentation (https://www.wsj.com/articles/electric-car-batteries-get-a-boost-from-artificial-intelligence-11604422792)

Technology-to-Market

Summary Slide

Final Deliverable:-5x > 80 cm² pouch cells which satisfy above target metrics under constant current test conditions. **Plus-Up Deliverable:**-5x > 80 cm² pouch cells which satisfy above target metrics under eVTOL test conditions.
-3x multi-layer pouch cells > 2 Ah.

